
Experiences Designing and Building a Multi-Hop Wireless
Ad Hoc Network Testbed

David A. Maltz Josh Broch David B. Johnson

March 5,1999
CMU-CS-99-116

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

In this paper, we describe our experiences building a multi-hop wireless ad hoc network of 8 nodes driving around a 700 m
by 300 m site. Each node runs the Dynamic Source Routing (DSR) protocol and interfaces seamlessly with existing Internet
infrastructure and the Mobile IP protocol. The issues discussed in this paper range from logistical and management issues, to
protocol design and performance analysis issues. We also present an early characterization of the testbed performance, and
describe a significant new challenge for ad hoc network routing protocols. The major goal of the paper, however, is to share our
experiences, in the belief that they may be useful to others who attempt to build other ad hoc network testbeds.

19990929 015
This work was supported in part by the National Science Foundation (NSF) under CAREER Award NCR-9502725, by the Air Force

Materiel Command (AFMC) under DARPA contract number F19628-96-C-0061, and by the AT&T Foundation under a Special Purpose Grant
in Science and Engineering. David Maltz was also supported under an Intel Graduate Fellowship. The views and conclusions contained here
are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either express or implied,
of NSF, AFMC, DARPA, the AT&T Foundation, Intel, Carnegie Mellon University, or the U.S. Government.

DISTRIBUTION STATEMENT A
Approved for Public Release

«I™ nTTATTrmr ™«™ Distribution Unlimited DTIC QUALITY IN£S>ECTED 4

Keywords: multi-hop ad hoc networks, Dynamic Source
Routing (DSR), mobile wireless network testbed

Contents

1 Introduction 2

2 Goals of the Testbed 2

3 DSR Protocol Overview 2

4 Testbed Overview 3
4.1 Design Decisions 4
4.2 Network Configuration 4
4.3 Node Equipment 4

5 Protocol Implementation 5
5.1 Packet Format 5
5.2 Outgoing Packets 6
5.3 Incoming Packets 6
5.4 Interfacing with User-Level Processes 7
5.5 MobilelP 7

6 Implementation Features 7
6.1 Integration with the Internet 7
6.2 Acknowledgment and Retransmission Mechanism 7
6.3 Managing the Retransmission Timer 8
6.4 Prioritizing Packets 9
6.5 Logging and Support Utilities 10

6.5.1 Global Positioning System Information 10
6.5.2 Network Monitoring and Fault Diagnosis 10
6.5.3 tcpdump and Signal Strength 11
6.5.4 Hardening the Network Tools 12
6.5.5 Per-Packet State Tracing, 12
6.5.6 Traffic Generation Tools 12

7 Preliminary Testing and Course Evaluation 12
7.1 Initial Node Testing 12
7.2 Characterizing the Course and Equipment 13

8 Ping Test Results 14
8.1 Quality of Communication 14
8.2 Verifying the DSR Retransmission Algorithm 15
8.3 Variability in the Environment 15
8.4 Inter-packet Spacing of ECHO REPLY Packets 16
8.5 Route Length 16

9 TCP Test Results 16
9.1 Single-Hop TCP Experiments 16
9.2 Two-Hop TCP Experiments 17

10 General Lessons Learned 18

11 Conclusions 19

12 Acknowledgements 19

1 Introduction
During the 7 months from August 1998 to February 1999,
we designed and implemented a full-scale physical testbed to
enable the evaluation of ad hoc network performance in the
field. The last week of February and the first week of March
included demonstrations of this testbed to a number of our
sponsors and partners, including Lucent Technologies, Bell
Atlantic, and DARPA. Though the process was very exciting
for us, we encountered numerous difficulties ranging from the
technical to the mundane. This paper describes our approach,
the obstacles we encountered, and our current solutions. Many
of the problems that arose and the issues that are described in
this paper appear painfully obvious after they are identified.
However, as the interest in multi-hop ad hoc networks con-
tinues to grow, more and more groups will attempt to build
and deploy similar testbeds and networks, and we hope our
experiences will enable them to avoid some of the difficulties
we faced.

Over the past several years, much research effort has been
focused on the design and specification of routing protocols
for multi-hop wireless ad hoc networks. There are now at least
ten proposals for such protocols currently under consideration
by the Mobile Ad Hoc Networks (MANET) Working Group
of the Internet Engineering Task Force (IETF). Before large
ad hoc networks can be deployed, testbeds must be created to
profile the performance of these protocols in the real world.

This paper is written as a design study with the goal of
identifying a series of issues that others should consider when
designing their own multi-hop ad hoc network testbeds. In
particular:

• We identify several tools we wrote to assist in the debug-
ging, validation, and analysis of the testbed. We argue
that one tool, called macf ilter, was critical to our
success, and should be implemented in other testbeds as
well. We explain the rationale and cost/benefits of the
other tools, including changes we had to make to stan-
dard tools before they would work as desired in the testbed
environment.

• We present an overview of how we architected the
Dynamic Source Routing (DSR) protocol into the ex-
isting BSD Unix network stack. It is our hope that this
will prove useful to other protocol architects who wish
to implement on-demand routing protocols in traditional
network stacks. We also explain the implementation and
validation of a network-layer hop-by-hop acknowledge-
ment scheme, including a novel heuristic for setting the
retransmission timer.

• We describe the methodology we used to perform an
initial characterization of the propagation environment at
the testbed site, as well as initial testing of the protocols.
This paper is not a performance analysis of the testbed or
of the DSR protocol (though such work is in progress).
The quantitative numbers reported in later sections of this
paper show that the testbed is working and validate that
the DSR implementation is behaving reasonably. They

also point out several interesting consequences of the
outdoor wireless environment.

Even if the designers of future testbeds choose to make
different decisions than we did, the list of issues contained
in this paper should be valuable for identifying the tasks re-
quiring attention so that staff assignments can be adequately
scheduled. To place the testbed into context, the next section
describes the goals that motivated our testbed.

2 Goals of the Testbed
In designing the testbed, our primary goal was to build a
platform that would enable basic research on the behavior
of a real implementation of ad hoc network protocols oper-
ating with truly mobile nodes in a outdoor environment. We
wanted the testbed to operate in an outdoor setting, since many
currently envisioned applications of ad hoc networks operate
outdoors [17], and this environment is inherently more unpre-
dictable than an in-building environment. Changes in weather,
the motion of cars and pedestrians, and the presence of build-
ings and hills all effect the propagation of radio signals. These
factors constitute challenges that a deployed ad hoc network
will face, and so we wanted to experience them in our testbed.
Development of an indoor ad hoc network testbed is a subject
for further study.

Another goal of the testbed was to push the protocols to
the point where they nearly broke, by subjecting them to
higher rates of topology change than previous testbeds had
explored [16, 1]. With the vehicles, radios, and site used in
our testbed, we forced the protocols to adapt to an environment
in which all links between nodes changed status at least every
220 seconds. Ignoring the additional factor of packet loss due
to wireless errors, on average, the network topology changed
every 4 seconds.

There have been several prior efforts to build ad hoc network
testbeds or large experiments, including work by the SURAN
Project [1], the WINGS Project [10], Task Force XXI [24],
and BBN. Very little has been published about the specifics of
these testbeds, though based on available literature, they are
very different from ours, both in terms of radio technology
and network design.

3 DSR Protocol Overview
The ad hoc network routing protocol used in our testbed is the
Dynamic Source Routing protocol (DSR) [12,13, 2]. Figure 1
shows the basic operation of the DSR protocol, which consists
of two mechanisms: Route Discovery and Route Maintenance.
Route Discovery is the mechanism by which a node S wishing
to send a packet to a destination D obtains a source route to D.

To perform a Route Discovery, the source node S locally
broadcasts a ROUTE REQUEST packet with the Time-to-Live
field of the IP header initialized to 1. This type of ROUTE
REQUEST is called a non-propagating ROUTE REQUEST and
allows node S to inexpensively query the route caches of
each of its neighbors for a route to the destination. If no

broadcast
route request V*.

X"

data
sent

data
sent

S,B,C,D

S,(B),C,D

S,(B),C,D

B->C dead

S,B

S,B,C,D

S,B,(C),D

off-road trucks
S,B,C

S.B.C.D

S,B,C,(D)

C moves away

S,B,(C),D

forwarding fails

route error

unicast
route reply

data received

Figure 1 Basic operation of the DSR protocol showing the
building of a source route during the propagation of a ROUTE

REQUEST, the source route's return in a ROUTE REPLY, its use
in forwarding data, and the sending of a ROUTE ERROR upon
forwarding failure. The next hop is indicated by the address

in parentheses.

REPLY is returned within the nominal one-hop round trip time1,
node S transmits a propagating ROUTE REQUEST that is flooded
through the network in a controlled manner and is answered
by a ROUTE REPLY packet from either the destination node
or another node that knows a route to the destination. To
reduce the cost of Route Discovery, each node maintains a
cache of source routes it has learned or overheard, which it
aggressively uses to limit the frequency and propagation of
ROUTE REQUESTS.

Route Maintenance is the mechanism by which a packet's
sender S detects if the network topology has changed such
that it can no longer use a known route to the destination D
because two nodes listed in the route have moved out of range
of each other. When Route Maintenance indicates a source
route is broken, S is notified with a ROUTE ERROR packet.
The sender S can then attempt to use any other route to D
already in its cache or can invoke Route Discovery again to
find a new route. Since the Lucent Technologies WaveLAN-I
radios [25] used in our testbed do not provide any link-layer
acknowledgment that a transmitted packet was successfully
received, Route Maintenance in our implementation is driven
by the DSR acknowledgment and retransmission mechanism
described in Section 6.2.

4 Testbed Overview

Figure 2 shows a logical view of the ad hoc network testbed.
The actual ad hoc network is comprised of 5 moving nodes,
labeled T1-T5, and 2 stationary nodes, labeled El and E2, that
communicate using 900 MHz WaveLAN radios. The ad hoc
network is connected to afield office using a 2.4 GHz point-
to-point wireless link over a distance of about 700 m. This
point-to-point link does not interfere with the radio interfaces
on the individual ad hoc network nodes.

1 In our testbed, we used 30 ms as the timeout for non-propagating ROUTE
REQUESTS.

900 MHz WaveLAN

wireless 2.4 GHz
point-to-point link

Central Office

Figure 2 Logical overview of the testbed network.

100

«100
£L
CD
E

| 200
<D

300

^-E1
■

^3l%¥ nss; ' ^C-^J^.

Field Office \/

^/ MY

<sW
100 200 300 400
meters from GPS reference station

500

Figure 3 Map of the test bed site showing the endpoint
locations and the typical course driven by the nodes.

At the field office is a router R that connects both the ad hoc
network and an IP subnet at the field office back to the central
office via a wide-area network. The visualizer node V is used
to monitor the status of the ad hoc network (Section 6.5.2), and
the GPS reference station (RS) located on the roof of the field
office is responsible for sending differential GPS corrections
to nodes in the ad hoc network.

The central office is home to a roving node (RN) that drives
between the central office and the ad hoc network. Node HA
provides Mobile IP home agent services [22] for the roving
node so that it is able to leave the central office and still
maintain connectivity with all of the other nodes in the testbed.

During a typical experiment, which we call a run, the
drivers of each of the moving nodes follow the course shown
in Figure 3 at speeds varying from 25 to 40 Km/hr (15 to
25 miles per hour). The road we used is open to general ve-
hicle traffic and has several Stop signs, so the speed of each

node varies over time, just as it would in any real, deployed
network.

We chose this configuration for our testbed as it is similar to
a variety of possible military and commercial scenarios. For
example, in a military scenario, the central office could repre-
sent a Tactical Operations Center, the field office a battlefield
command post, E2 could be a munitions dump, and the mov-
ing vehicles T1-T5 a convoy of trucks carrying ammunition
to a firing position at El. In a civil disaster relief scenario,
the offices could again represent regional and local command
centers, and the trucks T1-T5 could be ambulances or water
tankers moving between the disaster site El and the stag-
ing/treatment area E2. In all cases, the roving node RN can
represent a supervisor sent to inspect the scene, a service truck
sent to repair one of the nodes, or even an uninvolved node
making use of the ad hoc network for improved connectivity
as it wanders through the area.

4.1 Design Decisions

In choosing how many nodes to use in the testbed, we strove to
include enough nodes to create interesting multi-hop behavior,
while keeping the equipment and personnel requirements for
operating the nodes small enough to be feasible.

The geographical size of the testbed (700 m by 300 m), in
turn, was set as a balance between the number of nodes avail-
able (7, excluding the roving node RN) and the range of the
radios used by the nodes (approximately 250 m). Increasing
the range of the radios would allow us to run the testbed over
more varied terrain, but would require nodes to move faster
to maintain the same rate of topology change. Even with the
radios that we chose, however, we found that we had to mount
the nodes inside cars in order to move them in and out of range
of each other in reasonable lengths of time.

We derived several benefits from our solution to the con-
straints outlined above. Working outdoors allowed us to use
GPS (Global Positioning System) to accurately track the po-
sition of the nodes, which was critically helpful in charac-
terizing the network's performance. Another advantage of
keeping the range of the radios small and working outdoors
is the possibility of climbing to a high point from which the
entire network can be seen at one time. The importance of vi-
sualizing the entire network can not be overstated, especially
during the early stages of development when the network was
not working properly.

4.2 Network Configuration

All communication among the ad hoc network nodes, T1-T5,
El, and E2, is routed by the Dynamic Source Routing (DSR)
protocol [12,13,2]. Although the DSR protocol operates at
the IP layer of the network stack (OSI layer 3) and permits in-
teroperation between different physical interfaces, DSR con-
ceptually operates as a virtual link layer just under the normal
IP layer.

Nodes T1-T5, El, and E2 are assigned IP addresses fromti
single subnet, with E2 acting as a gateway between the Internet
and the ad hoc subnet. E2 was manually configured to use the

DSR protocol for communication on one network interface
(the 900 MHz WaveLAN link), and to use normal IP routing
over the other interface (the 2.4 GHz point-to-point link to its
default router R). Packets from nodes in the Internet destined
to addresses in the ad hoc subnet are routed by normal means to
E2, which has a statically configured route directing them out
the network interface to the ad hoc network. Once forwarded
into the ad hoc network by E2, DSR takes care of routing the
packets to their final destination, which often requires multiple
hops inside the ad hoc network. As explained in Section 6.1,
nodes in the ad hoc subnet (i.e., T1-T5 and El) did not have
to be configured to use E2 as a default router: when nodes
in a DSR ad hoc network send packets to nodes not in the
ad hoc network, the DSR protocol itself automatically routes
the packets to the nearest gateway (E2 in this case), where they
are forwarded into the Internet. The gateway node, E2, also
provides Mobile IP foreign agent services to any Mobile IP
nodes that visit the ad hoc network.

The roving node RN has available several methods for con-
necting to the Internet, and uses Mobile IP [22] to choose the
best method as it drives around the city. RN is normally within
range of the WaveLAN network at the central office, and its
WaveLAN network interface carries an IP address belonging
to the central office subnet. When RN is roving away from the
central office, it uses Mobile IP to register a care-of address
with its home agent on the central office subnet. While RN
has a care-of address registered with the home agent, the home
agent intercepts packets destined to RN, and tunnels each to
the care-of address using encapsulation.

When RN cannot use its primary WaveLAN interface be-
cause it is not in range of any other WaveLAN radios, it uses
its CDPD modem to connect to Bell Atlantic Mobile's CDPD
service, and registers its CDPD IP address with its home agent.
Once RN realizes it is in range of a DSR network, it can use the
DSR protocol to communicate directly with the other nodes
in the ad hoc network. To enable packets from nodes outside
the DSR network to reach RN, it registers itself with its home
agent via the foreign agent at E2, just as in normal Mobile IP.
When E2 receives a tunneled packet, it checks to see if the
packet is destined to a node registered as visiting the ad hoc
network. If so, E2 routes the packet to the visiting node using
DSR.

4.3 Node Equipment

Nodes T1-T5 were each implemented by a rented car carrying
an IBM Thinkpad 560X notebook. The Thinkpads were each
mounted in a home-built rack carried in the front passenger's
seat of the car, which also housed a GPS unit and 12VDC
to 110VAC power converter used to power the equipment.
Although tightening the 16 bolts that hold together each rack
was blister producing, experience has shown the racks are a
worthwhile investment as they prevent the equipment in the
cars from becoming jumbled and eliminate the risk of cable
connections coming undone.

The 5 moving nodes (T1-T5) each carry a 900 MHz Lucent
WaveLAN-I [25] radio connected to a 6 dB omni-directional

antenna. These antennas are mounted on a rack on the roof
of the cars, about 9 feet above the ground. The WaveLAN-I
radio is a Direct Sequence Spread Spectrum device with a
raw capacity of 2 Mb/s, and a 250 m nominal transmission
range. The WaveLAN-I uses a Lucent-designed CSMA/CA
MAC protocol that does not include link-layer retransmissions
or acknowledgments. It also does not use mechanisms like
those in IEEE 802.11 [11], such as RTS-CTS, to avoid hidden
terminal issues.2 We chose the WaveLAN radio as they have
a high enough bandwidth (2 Mb/s) to support both audio and
data traffic. Additionally, we have a long history of working
with these radios in both indoor and outdoor environments,
they use unlicensed spectrum, and they are available with a
jack for an external antenna.

To enable the moving nodes to determine their location,
they each carry a Trimble 7400 GPS receiver with the GPS
antenna mounted on the roof rack alongside the WaveLAN an-
tenna. Each GPS receiver is capable of calculating its position
to within 100 m at all times, but when provided with correc-
tion information from a GPS reference station can calculate
its position to within 1 m or 1 cm, depending on the frequency
and latency at which the correction information is provided.
When receiving correction information at least once per 25 s,
the GPS receiver operates in Differential mode (DGPS) and
calculates positions with 1 m accuracy. When receiving cor-
rection information consistently once per second, the GPS
receiver operates in Real Time Kinematic mode (RTK) and
calculates positions with approximately 1 cm accuracy. In
our testbed, the GPS reference station was located at the field
office, and the correction information it generated was sent to
the nodes as a stream of broadcast packets over the multi-hop
ad hoc network.

The two end-systems shown in Figure 3, El and E2, were
located at opposite ends of the course traveled by the mobile
nodes and were implemented with laptops identical to those
used in the moving nodes T1-T5. Because of their location,
El and E2 could be conveniently used to test connectivity
across the diameter of the ad hoc network. El carries a
single 900 MHz WaveLAN radio with a 6 dB omni-directional
antenna identical to that on the moving nodes. In contrast, E2
serves as a router between the ad hoc network and the rest
of the Internet. It communicates with nodes in the ad hoc
network using a 900 MHz WaveLAN radio attached to a 6 dB
yagi antenna and is linked to router R at the field office using a
2.4 GHz WaveLAN radio connected to a 12 dB yagi antenna.
We sited E2 at the opposite end of the course from the field
office to demonstrate that the ad hoc network did not have to
be close to any wired infrastructure. There is no 900 MHz
WaveLAN radio in the field office, so all traffic into or out of
the ad hoc network must travel through E2.

IP Header
(next protocol = Hop-By-Hop Options)

Hop-By-Hop Options Header
(next protocol = DSR Routing)

DSR Routing Header
(next protocol = TCP)

TCP Header
TCP data

2 At the time we began designing the testbed, the Lucent IEEE 802.11
product was not readily available, there were no FreeBSD device drivers
supporting this hardware, and the cards worked only when used with a base-
station. Thus, this product was not a viable choice for our testbed.

Figure 4 Layout of headers in a typical
packet in the DSR network.

The roving node, RN, carried a 900 MHz WaveLAN radio
and could use it to join the ad hoc network by communicating
with nodes T1-T5, El, and E2. It also carried a Cellular
Digital Packet Data (CDPD) modem that it could use for wide
area digital packet service at 11 Kb/s provided by Bell Atlantic
Mobile Systems.

Each of the nodes at the central and field offices are Intel
Pentium II PCs. All nodes ran the FreeBSD 2.2.7 UNIX
system, modified with our DSR [2] and Mobile IP [22] kernel
extensions.

5 Protocol Implementation
Our earliest implementation of DSR began as an extension to
the Address Resolution Protocol (ARP). Running at the link-
layer, each Ethernet frame had a DSR source route inserted
between the Ethernet header and the IP header. This solution
was simple, but could not span across multiple interface types.

The desire to support heterogeneous networks pushed our
implementation into the IP layer. The need to combine multi-
ple types of DSR information together on the same packet and
the desire to piggyback DSR information on data packets led
us a packet format based the IPv6 extension header scheme.

5.1 Packet Format

The control messages of the DSR protocol are encoded
using a series of extension headers that lie between the IPv4
header and the normal IPv4 payload (e.g., the ICMP, UDP, or
TCP header and data). This enables control messages to be
piggybacked on ordinary data packets when they are available,
or to be sent as separate control packets. Figure 4 shows the
layout of the headers in a typical packet. As in IPv6, we use
three types of extension headers:

Hop-by-Hop Options: Processed by every node that re-
ceives the packet and is used to carry DSR ROUTE REPLYS,

ROUTE ERRORS, and ACKNOWLEDGEMENTS. The Hop-
by-Hop Options extension header is also used to carry a
GPS Option that gives the physical location of packet's
originator at the time when the packet was transmitted.

Destination Options: Processed only by a node whose ad-
dress matches the IP Destination Address in the packet
(which can be a unicast, multicast, or broadcast address).
These headers are used to carry ROUTE REQUESTS.

DSft options processing
requests, replies, errors

jrce route forwarding

WaveLAN CDPD

Figure 5 The internal architecture of a node showing the
DSR components and the Mobile IP components.

Routing Header: Processed by a node whose address is
equal to the IP Destination Address of the packet. Carries
the source route describing the path that a packet must
take through the network.

With the one caveat explained next, we have found the ex-
tension header scheme an elegant way to transport routing
information for our on-demand routing protocol, and would
recommend it to other designers. We used the extension
header processing framework from the INRIA IPv6 distribu-
tion [8]. Although the code was modular and easy to work
with, we found that when passing around the chain of mbu f s
that comprise a packet, we frequently had to read through the
whole chain to find some header or other bit of information
in the packet. Were we to implement from scratch again, we
would pass along with the mbuf chain a structure containing
all the critical information present in the packet (e.g., the next
hop, whether an ACK is required, etc.), thereby enabling the
code to process the packet without having to find and read the
same extension header multiple times.

5.2 Outgoing Packets

Figure 5 shows the overall architecture of a node in the ad hoc
network, including the DSR and Mobile IP kernel compo-
nents, the user-level Mobile IP daemon, and the user-level
logging utilities.

All of the code implementing the DSR protocol resides
inside the kernel in a module that straddles the IP layer.
Conceptually, however, DSR can be thought of as a virtual in-
terface (dsrO) residing below the IP layer. Like other groups
that have used virtual interfaces to hide mobility from the
normal network stack [5], dsrO accepts packets from the nor-
mal IP stack just as any other interface would, but uses its

own mechanisms to arrange for their delivery via the actual
physical interfaces.

Packets originated by a node's transport layer enter the
IP layer as normal, where a routing table lookup is used to
determine which interface they should be sent out. Nodes that
use DSR exclusively (e.g., Tl-5 and El) have a default route
directing all of their packets out the dsrO interface. When a
packet is passed to the dsr_output () routine, DSR checks
the Route Cache for a route. If a route is not found, the packet
is inserted into the Send Buffer and a Route Discovery is
invoked for the packet's destination. Otherwise, if a route to
the destination is found in the route cache, the packet is passed
down into the dsr_xmit () routine. The dsr_xmit ()
code is responsible for delivering the packet to its next hop,
and so saves a copy of the packet into the Retransmission
Buffer before handing it down to the output queue of the
physical interface.

Every 30 ms, a Route Discovery timer inspects the contents
of the Send Buffer and, subject to the rate limiting described
in the DSR Internet-Draft [2], initiates Route Discovery for
any packets found in the Send Buffer. Likewise, a retrans-
mission timer runs once per 50 ms, examining the contents
of the Retransmission Buffer and retransmitting packets or
generating ROUTE ERRORS as necessary.

Because the radio interfaces we used are inherently broad-
cast and the CPUs are significantly faster than the link band-
width, we simplified our implementation by eliminating all
need for ARP. All packets sent by dsr_xmit () are sent
to the MAC broadcast destination address, so all nodes re-
ceiving the packet will process it. This actually causes no
extra processing overhead at the receiving nodes, since DSR
operates the network interface in promiscuous receive mode
to implement many of its optimizations [2].

As explained in Section 6.4, we needed to give the pack-
ets with DSR routing information priority access to the link.
After two initial attempts resulted in over-simplistic designs
that accidentally reordered packets, we decided the cleanest
solution was to implement a true multi-queue scheme for the
interface output queues. Packets to each interface are demul-
tiplexed into the outgoing queues based on the IP Type-of-
Service (TOS) bits in each header.

5.3 Incoming Packets

The IP module reads packets from the IP input queue as nor-
mal, and, following the IPv6 rules for extension headers, dis-
patches the packet to the appropriate upper layer module based
on the value of the IP Protocol field. Packets with a Protocol
field indicating a DSR header is present in the packet are sent
to the DSR options processing routines that handle each of
the DSR extension headers. This involves adding the route
from a ROUTE REPLY into the Route Cache; removing routes
from the cache for ROUTE ERRORS; removing packets from
the Retransmission Buffer for DSR ACKNOWLEDGMENTS; and
forwarding packets based on the Routing Header. Packets that
contain transport layer data for the processing node are handed
up to the transport layer.

5.4 Interfacing with User-Level Processes

The DSR module communicates with user-level agents on the
same node via an ahsock (ad hoc network control socket), de-
rived from the BSD concept of a routing socket. The ahsock
provided a general purpose conduit for information exchange
between all user-level and kernel-level modules on a node
concerned with the node's network operation. For example,
whenever DSR originates a data packet, it places the node's
location information into the DSR headers on the packet. This
information is used for diagnostic purposes in the testbed, and
is comprised by the node's latitude, longitude, heading, and
speed. The in-kernel DSR module learns the location infor-
mation from a user-level process called GPSd (Section 6.5.1)
which reads the information from the GPS unit and writes it
into the ahsock. Similarly, whenever the DSR module pro-
cesses a packet from another node, it extracts the location
information from the headers and sends the information to the
ahsock. As a result, processes on the node listening to the
ahsock can learn the last known location of the other nodes
that are originating packets. The ahsock also proved itself
an extremely valuable portal for invoking test code inside the
DSR layer and viewing the results.

5.5 Mobile IP

The Mobile IP functionality is split between user space and
kernel space, with a small encapsulator and decapsulator mod-
ule inside the kernel being controlled by the user-level mobiled
process, mobiled uses a collection of network interface con-
trollers to monitor the status of each interface, and to gather
information on any home agents or foreign agents reachable
via the interface. Once it decides which interface is currently
the best for communication, it uses the rtsock routing socket
to manipulate the kernel and routing table state to use that
interface.

6 Implementation Features
This section describes some of the notable features of our
implementation, namely our scheme for integrating ad hoc
networks with the Internet, the adaptive retransmission timer
used by the DSR layer, and several logging and support util-
ities that we found useful when working with the ad hoc
network testbed.

6.1 Integration with the Internet

We have extended the mechanisms of Route Discovery and
Route Maintenance to support communication between nodes
inside the ad hoc network and those outside in the greater
Internet. So that each node in the ad hoc network maintains
a constant identity as it communicates with nodes inside and
outside the network, we require that each node chooses a single
IP address, called its home address, by which it is known to
all other nodes. This notion of a home address is identical to
that defined by Mobile IP [22]. As in Mobile IP, each node is
configured with its home address and uses this address as the
IP source address for all of the packets that it sends.

TTTI
La-I T2,T3,T5

/ J ^J^y

Figure 6 Route Request for a node not in the ad hoc
network being answered by the Foreign Agent

Figure 6 illustrates node T2 inside the ad hoc network dis-
covering a route to a node D outside the network. As the
ROUTE REQUEST from T2 targeting D propagates, it is even-
tually received by the gateway node E2, which consults its
routing table. If it believes D is reachable outside the ad hoc
network, it sends a proxy reply listing itself as the second-to-
last node in the route, and marking the packet such that T2
will recognize it as a proxy reply. If the target node D actu-
ally is inside the ad hoc network, then node T2 will receive a
ROUTE REPLY from from both E2 and D. Since T2 can distin-
guish which replies are proxy replies, it can prefer the direct
route when sending packets to D. Our method of integrating
ad hoc networks with the Internet and several related issues
are described in more detail in a separate publication [3].

6.2 Acknowledgment and Retransmission Mechanism

Since the WaveLAN-I radios do not provide link-layer re-
liability, we implemented a hop-by-hop retransmission and
acknowledgment scheme within the DSR layer that provides
the feedback necessary to drive Route Maintenance. Each
packet a node originates or forwards is retransmitted until an
acknowledgment from the next hop is received, or until three
transmission attempts have been made, at which point the next
hop is declared unreachable and a ROUTE ERROR is sent to the
originator of the packet.

We utilize passive acknowledgments [15] whenever pos-
sible, meaning that if a packet's sender hears the next hop
forward the packet, it accepts this as evidence that the packet
was successfully received by the next hop.

If a node A fails to receive a passive acknowledgment for
a particular packet that it has transmitted to some next hop B,
then A retransmits the packet, but sets a bit in the packet's
header to request an explicit acknowledgment. This procedure
allows A to receive acknowledgments from B even in the case
in which the wireless link from A to B is unidirectional, since
explicit acknowledgements can take an indirect route from B
to A. Node A also requests an explicit acknowledgment from
B if B is the packet's final destination, since in this case, A will
not have the opportunity to receive a passive acknowledgment
from B.

4000 , i i i i

3500 -

3000 ' -

„2500 . -
%
'S 2000 -
E
Z 1500

1000 -

500 -

II ■ HI ■ 1 . . ._
50 100 150 200 250 300 350 400 450 500 550

Retransmission Timer (ms)

Figure 7 The distribution of values for the DSR
retransmission timer over several runs.

For each next hop to which a node has recently attempted to
forward packets, it keeps a separate estimate of the round trip
time (RTT) between it and the next hop. This RTT is then used
to initialize the retransmission timer for each packet sent to the
next hop. Our simulation studies [4] of the acknowledgment
scheme in IMEP [6] suggested that an adaptive retransmission
timer would be needed to accommodate competition for the
shared link by other nearby nodes. In keeping with this, we
used the TCP RTT estimation algorithm [26] to adapt the RTT
for each next hop.

Figure 7 shows the number of times a packet was sent with
a given value of the retransmission timer over the course of
several runs. Of the 4710 measurements in this particular
data set, two values (both 920 ms) are not show in this figure.
Approximately 75% of the packets transmitted use the mini-
mum retransmission timer value of 50 ms. However, for the
other 25% of the packets, the retransmission timer adjusted
itself to values between 60 ms and 920 ms. The wide range
indicates that an adaptive retransmission scheme is probably
required for good performance if acknowledgments are im-
plemented at a layer above the link layer. IEEE 802.11, for
example, does not require an adaptive retransmission timer
since the acknowledgment is a scheduled, atomic part of the
exchange of a single data packet, and so the time between
transmission of a data packet and the receipt of the acknowl-
edgment is not effected by the number of nodes attempting to
acquire the media.

When performing retransmissions at the DSR layer, we
also found it necessary to perform duplicate detection so that
when an acknowledgment is lost, a retransmitted packet is
not needlessly forwarded through the network multiple times.
The duplicate detection algorithm used in our implementation
specified that a node should drop a packet if an identical
copy of this packet was found in either its Send Buffer or
its Retransmission Buffer. We found that this simple form

of duplicate prevention was sufficient, and that maintaining a
history of recently seen packets was not necessary.

In order to limit load on the CPU, we set the granularity
at which the retransmission timer is serviced to 50 ms. This
value was chosen based on observed retransmission timer
values and the average one-hop RTT, which is 30 ms.

6.3 Managing the Retransmission Timer

As described in Section 6.2 we implemented a hop-by-hop
acknowledgment and retransmission scheme within the DSR
layer for the purpose of performing Route Maintenance.
However, we found that large numbers of packets are lost
or retransmitted needlessly if the retransmission timer does
not adapt quickly enough during periods of network conges-
tion. During times of network congestion, the time between
when a packet is sent and the acknowledgement received in-
creases due to the need for both packet and acknowledgement
to compete for the media.

We found that a simple method of reacting to increasing
congestion did not work. If retransmission timer expirations
are treated as a RTT sample of twice the current RTT, the value
of the retransmission timer tends to diverge and remain pegged
at its maximum value, even after congestion has subsided.

We developed a successful retransmission timer algorithm
by including a heuristic estimate of the level of local conges-
tion, so that the retransmission timer could react quickly to
changes. One of the simplest ways for a node to measure
congestion in the network is to look at the length of its own
network interface queue. Specifically, if more than 5 packets
are found in the interface queue — meaning that congestion is
starting to occur—we increase the value of the retransmission
timer 20 ms for each packet in the queue. This heuristic allows
the retransmission timer to increase quickly during periods of
congestion and then return just as quickly to its computed
value once the congestion dissipates.

The result of a simple experiment demonstrating this idea
is shown in Figure 8. This figure represents an experiment
in which node A sent 300 ICMP Echo Request packets to
node B at a rate of 10 packets per second. The interface queue
at node A was alternately disabled (not serviced by the device
driver) for three seconds and then enabled for 10 seconds in
order to simulate congestion. In Figure 8(a) and (b), the left-
most line in the sequence plot represents the time that an Echo
Request with the specified sequence number was sent from A
to B. The center line of X's (shifted 1 second for clarity)
indicates what ICMP sequence numbers were retransmitted
by the DSR layer at node A, and the right-most line (shifted
2 seconds for clarity) indicates when node A received the
corresponding Echo Reply packets from B for each ICMP
sequence number.

Figure 8(a) shows the ICMP sequence number plot for the
case in which no additional heuristics were used to adapt the
retransmission timer. Figure 8(b) shows the same plot for
the case in which the queue length was taken into account as
discussed above. Comparing the two figures, there is a total
of 118 retransmissions in the case in which the queue length

15 20 25
Time of original ICMP request (s)

(a) ICMP sequence plot - no heuristics

15 20 25
Time of original iCMP request (s)

(b) ICMP sequence plot - queue length heuristic

(c) DSR retransmission timer - no heuristics (d) DSR retransmission timer - queue length heuristic

Figure 8 Retransmission behavior with and without heuristics to adapt to congestion. The time base of
retransmissions and replies in figures (a) and (b) have been shifted for clarity.

was not considered, but only 16 retransmissions occur in the
case in which the queue length was used to help adapt the
retransmission timer.

Figures 8(c) and (d) show the value of the retransmission
timer for a given packet at the time at which it was sent
by the DSR layer, in order to illustrate the reason for the
difference in the number of retransmissions. When the queue
length is not used as a heuristic to set the retransmission
timer, the maximum value used for the retransmission timer is
240 ms (Figure 8(c)). When the queue length is accounted for
(Figure 8(d)), the retransmission timer backs off much more
quickly when the queue begins to fill up, attaining a maximum
value of 810 ms. However, as the queue empties, it quickly
returns to its normal (measured) value. This behavior results
in significantly fewer retransmissions by the DSR layer during
periods of transient congestion.

6.4 Prioritizing Packets

It is critical that packets generated by the routing protocol
propagate through the network in a timely fashion. For exam-
ple, ROUTE REQUESTS that are significantly delayed prevent
data from being transmitted. Similarly, delaying the trans-
mission of a ROUTE ERROR allows bad state to remain in
the network (thereby increasing packet loss), and delays in
transmitting network-layer acknowledgments may lead to ex-
cessive packet retransmissions that will congest the network.

For this reason, all DSR packets (REQUESTS, REPLIES,

ERRORS, and ACKNOWLEDGMENTS) are given higher prior-
ity than normal data packets. Additionally, data packets that
are being retransmitted by the DSR layer are also treated as
high priority packets, since the failure to get such a packet
through may result in an upper-layer protocol retransmitting
the packet. We noted these competitive retransmissions in
our early testing, but did not quantify their impact before

changing the priority of retransmissions as described here to
compensate.

To enable priority-based scheduling of packets transmis-
sions, we implemented a multi-level queue scheme in which
packets are placed in different queues based on their priority.
As described in Section 5.2, priorities are assigned to pack-
ets using the Type-of-Service (TOS) field in the IP header.
Currently, we need only two-levels of priority: low delay
and normal priority. The highest priority queue is always
completely serviced before any packets from the next-highest
priority queue are transmitted. Although the potential for star-
vation exists with this scheduling algorithm, we have found
in practice that starvation does not occur.

6.5 Logging and Support Utilities

Each node in the testbed runs a series of user-level logging
and monitoring utilities. In the context of the testbed, the
output of these utilities serves as the basis for the post-run
analysis of each experiment. In a deployed network, some
of this information could also be valuable directly to the end
user.

6.5.1 Global Positioning System Information

Each node in the network is outfitted with a GPS receiver
and runs a program called GPSd, which reads the current
position information from the GPS receiver over a serial cable
and makes it available to the other processes on the node via
a local socket (Section 5.4). Whenever a node originates a
packet, the DSR code includes the node's current location in
the header of the packet so that each of the packet's recipients
will learn the location of the sender. By logging the GPS
information, we can analyze the behavior of DSR during a
run and can, for example, recreate any run of the testbed in
simulation.

As described in Section 4.3, the GPS receivers must be
continually supplied with up-to-date corrections in order to
obtain the highest degree of accuracy in the GPS position in-
formation. This correction information is generated once per
second by the GPS reference station located at the field office,
and must be delivered to the GPS receivers with minimum
delay in order to be useful. Typical GPS deployments use a
long-range broadcast radio to distribute the corrections, but in
our testbed, we used the ad hoc network itself to distribute the
corrections.

The correction information is generated at the reference sta-
tion in a Trimble proprietary binary format, which is encapsu-
lated into IP packets and transmitted across the point-to-point
2.4 GHz wireless link to E2. From E2, the corrections are mul-
ticast into the ad hoc network by piggybacking the data onto
a ROUTE REQUEST targeted at a multicast address [2]. The
correction packets propagate hop-by-hop across the ad hoc
network, and the GPSd process on each node loads the cor-
rection information into the GPS receiver. In our experiments,
the routing protocol delivered the correction packets with low
enough delay that all GPS receivers typically operated in the

highest accuracy RTK mode, where position fixes have accu-
racy within about 1 cm.

6.5.2 Network Monitoring and Fault Diagnosis

In order to gather real-time statistics on node performance
and status (e.g., number of packets forwarded and number
of ROUTE REQUESTS sent), each node runs a process called
the Position and Communication Tracking daemon (PCTd).
The purpose of the PCTd is to enable real-time monitoring
and visualization of the network as it runs, and to enable a
replayed visualization of a run after it concludes. To create a
permanent record of the run, PCTd logs the data to a local file,
and to facilitate real-time diagnosis, it unicasts the information
that it collects over the ad hoc network to a visualizer V at the
field office (Figure 2).

The visualizer application is written in Tcl/Tk and displays
a map of the site showing the current location of all vehicles,
based on the GPS information reported from PCTd. Clicking
on a node brings up event logs for that node, and allows the
user to open strip-chart plots of information, such as error
rates and packet forwarding rates, that were recorded at the
node.

Figure 9 shows a screen shot of the visualizer application
during the replay of a testbed run. The main window shows
the location of the nodes, based on the information reported
by PCTd. The clock at the top right shows the elapsed time in
seconds since the run began. Across the bottom are boxes for
each node which show the quality of the position fix provide by
GPS (all nodes show Real-Time Kinematic Float in the figure)
and the time at which the last PCTd update was received from
that node. The three windows down the side show strip-chart
recordings of the number of packets per second handled by
nodes during the run as a function of elapsed time. Reading
from top to bottom, they show:

1. The number of DSR packets per second forwarded by
node 6 (labeled E2 in Figure 2). This indicates the total
traffic into and out of the ad hoc network.

2. The number of TCP packets per second received by the
transport layer on node 7 (labeled El in Figure 2).

3. The number of UDP packets per second sent by node 3
(labeled T3 in Figure 2) while the synthetic voice traffic
generator was running.

The visualizer serves three major roles in our testbed. First,
since the PCTd packets themselves traverse the ad hoc net-
work, simply receiving PCTd updates indicates that the basic
network is functioning. Should the network fail, PCTd does
log all its information on local disk where it can be recovered
after the run. Second, the visualizer has proven crucial for
explaining to others what is happening in the network. Since
the course is over 700 m long and makes several turns, there
is almost no way to see all of it at once. Without a "bird's
eye" view of the network, it was hard to make people grasp
what they were seeing. Finally, the network is of sufficient
complexity that even we as its designers and operators needed

10

im
Current Time: 252.69

7: 204.194.28.217f
3: 204.lM.28.M3i
2: 2M.194.28.212J

23: 204.194.28.196
1: 204.194.28.211
4: 204.194.28.214
G: 204.194.28.216
5: 204.194.28.215

;PS Ouallta: 1 fK-Fl 3 : RWfl. 4 . TITK-FL 5 RTK-FL G ' RTK-ft 7 _ RTK-R

. ;a» Update: 1 352.38 2 251.31 3 ' 249.73 4 251.27 5 251.« 6 250.86 7 251.72

Connection Information -TCP Stats UBP; Stats:: : ISR Starts

LAN

98

884

70

56

42 :|

i28

14

JO 150 180 2l0 240

91

78

65

52

39

26

13 -i*W * ■ ■»■ ■ -■ * •

5Ö.\:;lSÖ 180 So "240
\r~-Qzsi ..<■■?-■!■*:

■■:■: ..■
■ :■'■ :. .-■;

49 ■

42 .'•

35 :

28 ■

21 ■

14 ■

7

0 150 180 2l0

Figure 9 Screen shot of VIZ, the network monitoring and fault diagnosis tool. The main window shows the location of the nodes
based on the information reported by PCTd. The three windows down the side show the number of packets per second forwarded by

node 6, received by TCP on node 7, and sent by UDP on node 3, respectively.

a network management console in order to look for subtle
interactions and diagnose problems on the fly.

6.5.3 t cpdump and Signal Strength

During a standard run, each node uses t cpdump to record
to local disk all the packets it received during the run. Post-
run analysis of these packet traces is the single best source
of information we found for understanding the activity of the
network. As a caveat, we did find that even though we used
233 MHz Pentium laptops connected to a link with a maximum
bandwidth of 2 Mb/s, when t cpdump attempted to capture
the entire packet (snaplen = link MTU), the bursts of disk
activity for large streams of received packets were enough to
cause the machines to delay sending their acknowledgment
packets past the expiration of the retransmission timer. The
resulting retransmissions more than halved the goodput we
measured for TCP and CBR transfers—indeed, during several
experiments that we ran in the lab, TCP goodput dropped from
0.9 Mb/s to 0.3 Mb/s when t cpdump was run with a snaplen

of 2000 bytes. We found that saving only the first 200 bytes of
data from each packet did not adversely affect TCP's goodput.

For each packet received, the WaveLAN-I cards report the
"signal strength" and "signal quality" with which they re-
ceived the packet — information which is useful for character-
izing the quality of the wireless link. Since this information is
associated with each received packet, we originally found that
the most convenient way to make this information available to
our monitoring applications was to append the signal strength
information to each incoming packet before the WaveLAN
device driver tapped the packet off to the Berkeley Packet
Filter (BPF). It was the need to record the metrics at the end
of each packet that originally motivated us to have t cpdump
record the entire packet. Instead, we were able to capture the
signal strength information without overloading the machines
by extending the BPF header (struct bpf _hdr) with a
generic interface-metrics field so that the signal information
could be tapped off with each received packet, regardless of
the snaplen specified.

11

6.5.4 Hardening the Network Tools

When working with standard utilities such as Netperf [14]
and with our own PCTd, we found that they frequently ex-
ited, crashed, or aborted. Specifically, many network utilities
terminate upon receiving an error from system calls such as
write or sendto. However, in the the dynamic, unpre-
dictable environment of an ad hoc network where tempo-
rary partitions are unavoidable, we found that these programs
needed to be altered so that the receipt of an ICMP Destination
Unreachable message did not result in a fatal error. We gen-
erally handled these errors by putting the process to sleep
for a few seconds, clearing the error on the socket, and then
allowing it to retry its previous operation.

6.5.5 Per-Packet State Tracing

In order to understand the packet traces we recorded, it was
useful to have access to the internal state variables of the
protocols. For our TCP traffic generator, we used the program
DBS [19], which both creates an offered load and utilizes
a small kernel module that records the contents of the TCP
protocol control block every time a packet is sent or received.
DBS then saves the collected control blocks to a local file.

Likewise, to verify parts of the DSR implementation, such
as the retransmission timers, we implemented a logging device
akin to syslog called /dev/kdsr to which DSR wrote its
internal state variables every time it sent a packet. A user-level
program read these binary records from the kernel and logged
the variables to disk for later analysis, syslog was not
appropriate for this task, because this logging had to be very
efficient to avoid disrupting the system. We believe converting
log records to printable strings on critical code paths within
the kernel would have been too costly an operation.

6.5.6 Traffic Generation Tools

In order to obtain good experimental control over the load
offered to the network, we developed an Application Traffic
Generator (ATG) program capable of performing three types
of data transfers with any other machine in the network also
running the ATG. The ATG currently supports synthetic voice
calls, bulk data transfer, and location dependent transfers.
Voice calls are synthesized by a stream of 1000-byte UDP
packets being sent from caller to callee for 10 seconds at a
rate of 8 packets per second. The caller then pauses for 10
seconds while the callee sends the caller a similar data stream
for 10 seconds. This pattern then repeats for the duration of
the call to simulate the back and forth nature of speach. Bulk
data transfers consist of a TCP connection transferring a file
from one machine to another (i.e., FTP). Location dependent
transfers make use of the GPS information available on the
nodes to begin a transfer whenever the sending node enters an
area specified by GPS coordinates and end the transfer when
leaving the area.

The pattern, rate, and size of the connections are specified
to the ATG running on each machine by a configuration file.
Table I shows the load carried by the testbed network dur-
ing full runs. It includes: each node making one voice call

Figure 10 The map display of ad-hockey showing the
positions and trajectory of the nodes. The trajectory can be

changed by click-and-drag on the grey knots.

to every other node once per hour; each node transferring a
data file to every other node once per hour; and each moving
node (Tl-5) making a location dependent transfer to El when
within 150 m of El. The table also shows the load created by
the "differential GPS corrections" (Section 6.5.1) and the situ-
ational awareness (PCTd) information (Section 6.5.2) carried
on the network.

7 Preliminary Testing and Course Evaluation
7.1 Initial Node Testing

The initial testing of our implementation of DSR was ham-
pered by the fact that we intended to use radios with a range
of about 250 m, and testing the implementation meant repeat-
edly and repeatably moving the nodes in and out of range
of each other. Not having the services of the school track
team available for this, physically moving the nodes in order
to cause network topology changes while controllably debug-
ging the implementation would be an intractable problem. To
enable us to test our implementation quickly on a wide range
of topologies and movement patterns, we developed a simple
ad hoc network emulation system.

We placed all of the physical laptops running the actual DSR
code together in our lab, each connected to their actual radio.
Since each machine was physically within direct range of all
the others, we could emulate any desired topology by simply
preventing the network stack of each machine from process-
ing the packets that it would not have been able to receive had
the nodes actually been deployed in the field and separated by
varying distances. To achieve this, we implemented a packet
killer called the macfilter between the physical interface and
the network layer input queue. The macfilter checks the MAC
source address of each received packet against a list of pro-
hibited addresses. Packets whose source addresses are found
on the list are silently dropped. Emulating the motion of the
nodes then reduces to the problem of loading the macfilter with
the proper list of prohibited addresses at appropriate times.

12

Table I Load offered to the network by nodes in the testbed.

Application Rate Protocol Size

Voice 6/hour/node UDP Average of 180 kbytes

Data 5/hour/node TCP 30,60, or 90 kbytes

Location Dependent When near El TCP Average of 150 kbytes

GPS 1 pkt/sec broadcast UDP 150 bytes

PCTd 1 pkt/sec/node unicast UDP 228 bytes

We control the macfilter packet-killer with a trace file con-
sisting of the MAC source address lists and the times at which
these lists should be loaded into the macfilter. The trace files
are created by using our ad-hockey graphical scenario cre-
ation tool to draw the paths the nodes should move along
(Figure 10). The ad-hockey tool then generates the trace
files-using a trivial propagation model where any nodes falling
within a fixed radio range of each other can communicate, and
any falling outside the range cannot. As the emulation runs,
ad-hockey displays the "positions" of the nodes as they
"move", allowing the testers to correlate node positions with
protocol behaviors.

Our emulation system of a packet-killer controlled by a
trace file is similar in concept to the Network Trace Replay
system [21], but neither it nor any of the other existing emu-
lation systems available at the time had the expressive power
to emulate a multi-hop ad hoc network. At a minimum, the
packet-killer must be able to express the notion that a node
A can receive packets from B while simultaneously and in-
dependently being unable to receive packets from C. To be
convenient, the emulation system must also provide tools for
easily generating the packet-killer control files. For testing
ad hoc networks, where the topology changes are driven by
movement, we found having a tool that allowed us to draw the
"motions" of the nodes extremely useful.

We do not claim that performance measurements made on
the emulated network created by macfilter in any way ap-
proximate the measurements of a deployed network, and, in
fact, we have verified that results obtained in the lab are not
comparable to those collected in the field. Our packet-killer
and trace generator do not emulate the variability of the out-
door wireless environment, and all the nodes are in the same
collision domain, so there are no hidden terminal problems.

Nevertheless, the macfilter was a critically important tool
during the early stages of developing and debugging the ad hoc
networking code, as we could exercise all aspects of the pro-
tocol from within our lab without having to spend count-
less hours running around campus to create physical topology
change. Using the emulation system, we created scenarios
to individually test all the protocol's reactions to topology
change, including Route Discovery, Route Maintenance, and
the retransmission timers. The macfilter also allowed us to
perform regression testing on the implementation, and to find

bugs that only appeared after tens of hours of running, whereas
we could not possibly ask our human drivers to keep driving
that long.

Since developing the macfilter as a protocol development
tool, we have begun working to develop and validate systems
that support true ad hoc network emulation [18, 9] which can
be used for the accurate performance analysis of protocols and
systems running on top of an ad hoc network.

7.2 Characterizing the Course and Equipment

As part of conducting an initial survey of the site, we found it
particularly helpful to obtain a rough characterization of the
site's propagation environment. We had two cars drive the
course at about 30 Km/hr (20 miles per hour), one following
the other, with the trailing car transmitting 1024-byte packets
to the lead car 10 times per second. For each experiment,
the cars made three laps of the course, a total driving time of
about 660 seconds. We conducted experiments with the cars
separated by 10, 25, and 50 seconds, which on the straight-
aways is a distance separation of approximately 90 m, 220 m,
and 440 m, respectively.

During the experiments, each node recorded all packets
heard by its radio using tcpdump. We then used a packet
trace differencing tool that we developed to find the packets
sent by the trailing car that were not received by the lead car.
For all experiments, we found that the transmission losses
occurred in regular bursts synchronized with the 220-second
lap time. For example, Figure 11 depicts the losses as function
of time for the 25-second separation experiment, with a line
drawn at 1% of total losses.

When plotted on a map of the site, the location of the worst
propagation areas turned out to be surprising. Figure 12 shows
a ' x' mark and a '+' mark for each time period in which the
loss was greater than the 1% line in Figure 11. The ' x' mark
depicts the point where the trailing car was located when it
transmitted the packets that were lost in transmission, and the
'+' mark depicts the point where the lead car was located when
it failed to receive the packets. All of the loss bursts occurred
while the nodes were on the straightest part of the course with
clear line-of-sight to each other. There is no elevation change
along that portion of the course, and the parking lots along the
south side of the road were empty during the test.

13

100

Figure 11 Times at which packets were lost during a run.
Horizontal line indicates 1% of total number of packets.

Nodes maintained 25 s separation (220 m).

100-

2!
w
Q.
C3
E

100

;200

300

1 ' —1 p—" i .

^—s^.
\ location lost packets sent from
+ location of intended receiver

. Field Office \/

i i

N§H
■

100 200 300 400
meters from GPS reference station

500

Figure 12 The location of the sending node and receiving
node when more than 1% of packet loss occurred. Nodes

maintained 25 s separation (220 m).

To rule out the possibility that the drivers were merely
speeding up on the straightaway and so increasing the distance
between the nodes, we reran the experiment with a separation
of 10 seconds (90 m) between the nodes. The results, depicted
in Figure 13, show that even with a spacing between the cars
of much less than half the radios' nominal range of 250 m,
there are still significant loss bursts in front of the field office
building. Our current hypothesis is that the radios are suffering
from multipath reflection off of the flat fronts of the buildings,
in particular the large building next to the field office.

8 Ping Test Results
As an initial end-to-end measurement of the ad hoc network's
ability to route packets over multiple hops between the nodes,

jii
a

CO
0.
C3
E
o

100

;200

300

x location lost packets sent from
+ location of intended receiver

100 200 300 400
meters from GPS reference station

500

Figure 13 The location of the sending node and receiving
node when more than 1% of packet loss occurred. Nodes

maintained 10 s separation (90 m).

we conducted a test in which the 5 moving nodes T1-T5 drove
the course shown in Figure 3 at a speed of 30 Km/hr (20 miles
per hour) while maintaining a separation of approximately
200 m.

El then offered a traffic load to the network, consisting
solely of 64-byte ICMP ECHO REQUEST packets directed at
stationary node E2, sent every 300 ms for approximately 1000
seconds. Since El and E2 are not within wireless transmission
range of each other and since the cars continue to loop between
these points, the sequence of hops taken by each packet was
variable. Including the IP header (20 bytes), the WaveLAN
header (16 bytes), and the GPS information piggybacked on
each packet (44 bytes), the minimum size of these packets was
144 bytes. As explained in the following sections, these ping
tests served a variety of purposes.

8.1 Quality of Communication

During this test, El originated 3343 unique ICMP ECHO
REQUEST packets. E2 returned 3013 ICMP ECHO REPLY

packets for an overall end-to-end loss rate of 10%. This num-
ber gives us a rough approximation of the type of loss rate that
applications will experience when trying to operating within
the ad hoc network.

Since 10% is a high loss rate for end-systems to cope with,
we examined the network dynamics of this test more carefully
to determine what caused the losses. Due to the setup of the
test, El alternated among using each of the moving nodes as
the first hop on its route to E2. Table II shows the raw loss
rate over a single hop from node El to each of the moving
nodes, excluding packet retransmissions by the DSR layer.
These numbers characterize the error rate of the wireless link
and show what the per-link loss rate would be in the absence
of retransmissions by DSR.

In contrast, Table III shows the loss rate of the links be-
tween El and each of the moving nodes when including DSR

14

Table II The packet loss rate experience by node El to each
first-hop node when counting the number of unique ECHO

REQUESTS transmitted by El. The packets received column
does not include retransmissions by the DSR layer.

Packets Sent Packets Recv Loss Rate
Tl 730 635 13.01%
T2 525 459 12.57%
T3 658 604 8.21%
T4 472 414 12.29%
T5 947 844 10.88%
Total 3332 2956 1.1.28%

Table III The packet loss rate experience by node El to
each first-hop node when counting the number of unique

ECHO REQUESTS transmitted by El. The packets received
column includes retransmissions by the DSR layer.

Packets Sent Packets Recv Loss Rate
Tl 730 681 6.71%
T2 525 489 6.86%
T3 658 631 4.10%
T4 472 448 5.08%
T5 947 907 4.22%
Total 3332 3156 5.28%

retransmissions. The significant reduction in loss rate over
each link shows that the DSR retransmission scheme is serv-
ing its purpose.

8.2 Verifying the DSR Retransmission Algorithm

In addition to verifying that DSR retransmissions were im-
proving the per link loss rate perceived by applications, we
also needed to verify that DSR was not retransmitting ex-
cessively and thereby burdening the network. During this
1000-second ping test, El transmitted 4401 ECHO REQUEST

packets. As mentioned in Section 8.1, only 3343 of these
packets had unique sequence numbers, indicating that 1058
packets (24% of the total number of transmissions) were actu-
ally retransmissions or duplicates generated by the DSR layer.

Of the 1058 retransmitted or duplicate packets, 185 were
found to be packets removed from the Retransmission Buffer
and recycled by the DSR layer because the packet's first-hop
destination was found to be unreachable.

In order to explain the remaining retransmissions, we at-
tempted to verify that for each first hop node (T1-T5), the
number of retransmissions made by El satisfied the follow-
ing criteria, which captures the notion that packets must be
retransmitted until they are acknowledged:

Rxmt s=s Orig - ACKpassive + Rxmtiost + ACKiost

where Rxmt is the total number of retransmissions made
by El, Orig is the number of unique packets originated by El,
ACKpassive is the number of passive acknowledgments re-
ceived by El, Rxmtiost is the number of retransmissions
made by El that were not received by the first-hop node, and

Table IV The the number of ECHO REQUESTS transmitted
by node El to each first-hop node and the number of passive
acknowledgments that El received from each first-hop node.
The expected number of retransmissions (the difference of

column 1 and column 2) is shown in the third column. These
numbers do not include retransmissions by the DSR layer.

Packets Sent Passive Acks Expected Rxmts
Tl 730 613 117
T2 525 445 80
T3 658 601 57
T4 472 410 62
T5 947 842 105
Total 3332 2911 421

ACKiost is the number of explicit acknowledgments trans-
mitted by the first-hop node that were not received by El. For
purposes of analysis, we rewrite the equation as:

Rxmt - Rxmtiost - ACKi0St « Orig - ACKpassive

Table IV evaluates the right half of this equation and shows
how many ECHO REQUEST packets were originated by El
when using each of the moving nodes as the first hop and
how many passive acknowledgments were received as a result
of the first-hop node forwarding the packet. The difference
of those two values is the number of retransmissions that we
would expect El to attempt to each first-hop node. The total
number of expected retransmissions is 421.

Table V evaluates the left half of the equation, showing the
actual number of retransmissions made by El to each of the
moving nodes and the number of these retransmissions that
were lost. Subtracting these numbers yields the number of
retransmissions received by the first hop node. Each retrans-
mission must be explicitly acknowledged by the first hop node,
and the loss of the explicit acknowledgement will cause El
to retransmit the packet again. Subtracting the lost explicit
acknowledgements yields the total number of successful re-
transmissions made by the network. Summing over all first
hops shows there were a total of 345 successful retransmis-
sions.

Using this rough estimation technique, we see that the
number of expected retransmissions shown in Table IV is
greater than the number of successful retransmissions shown
in Table V. This verifies that DSR is not retransmitting spuri-
ously. The numbers are not exactly equal due to packets that
are discarded after being retransmitted the maximum allowed
number of times.

8.3 Variability in the Environment

Occasionally during our testing, we found that El could com-
municate directly to E2, a distance of 671 m. Since the
900 MHz WaveLAN radios used in this testbed are specified
by Lucent to have a range of about 250 m, this indicates just
how variable electro-magnetic propagation can be. During
these ping tests, El attempted to send 367 ECHO REQUESTS

directly to E2. 192 of these packets were originations (not

15

Table V The difference in the number of retransmissions
made by El to each first-hop node and the number of those

retransmissions that were lost is the number of
retransmissions that got through. Subtracting the number of

the explicit ACKs lost yields the number of successful
retransmissions.

Table VI The distribution of route lengths used during the
ICMP tests. The ECHO REQUEST packets traversed routes

from El to E2 and the ECHO REPLY packets traversed routes
from E2 to El.

Rxmts Rxmts Lost Acks Lost Successful
Tl 254 94 17 143
T2 102 63 6 33
T3 75 35 2 38
T4 82 34 2 46
T5 189 81 23 85
Total 702 307 50 345

1400 i ,

1200 - -

£ 1000

a.

- -

rr 800
o

Q.

ü 600
"S

-O
E
Z 400 -

200 -. ■

m^ ■

-

0.2 0.4 0.6 0.8 1
Inter-packet spacing of received ICMP Echo Reply packets (s)

Figure 14 Inter-packet spacing of received ICMP Echo
Reply packets when Echo Requests were sent every 300 ms.

retransmissions), and of these 192 originations 149 unique
replies were returned from E2, giving a loss rate of 22.4%.

8.4 Inter-packet Spacing of ECHO REPLY Packets

During the ICMP test, ECHO REQUEST packets were sent once
per 300 ms, so we would expect the inter-packet spacing
of ECHO REPLYS to be close to 300 ms as well. As noted
above, 3013 ECHO REPLY packets were returned from E2 to
El. Figure 14 shows the inter-packet spacing for the 99th
percentile of these packets; 30 measurements were discarded
as outliers. The mean inter-packet spacing is 314 ms with a
standard deviation of 0.026 ms.

8.5 Route Length

During the ping test, end-system El received 3010 ECHO
REPLY packets that we were able to match to specific ECHO

REQUESTS. Table VI shows the distribution of route lengths
used for both REQUESTS (from El to E2) and REPLYS (from
E2 to El). Slightly over 90% of the routes used between
El and E2 were two- and three-hop routes. Occasionally, a
direct route is discovered between the two end-systems, but
this route receives little use because of its poor quality.

Route Length
1 2 3 4

ICMP Echo Request 57 2405 547 1
ICMP Echo Reply 188 2395 422 5

9 TCP Test Results
In addition to the ping tests reported in Section 8, we ran sev-
eral experiments to characterize how well TCP [23] performs
in our ad hoc network testbed. We first ran each experiment in
the lab, using the macfilter tool (Section 7.1) to create a multi-
hop environment. We then repeated the experiment outside in
the actual ad hoc network. The lab measurements serve as a
useful benchmark by giving us a best-case approximation to
which we can compare the data collected the the field.

9.1 Single-Hop TCP Experiments

Our first set of experiments were intended to establish a base-
line TCP performance and verify that the implementation of
DSR itself did not degrade TCP's performance. Inside our
lab, we set up two DSR nodes and ran TCP benchmarks using
DBS across the one-hop link between them. In the single-hop
case, passive acknowledgments cannot be used and so a DSR
ACKNOWLEDGMENT is transmitted in response to each data
packet.
, Our first experiment consisted of performing 5 data trans-
fers of 1 MB each in the lab environment. Over these 5 trans-
fers, TCP averaged 0.86 Mb/s (104 KB/s) with a standard
deviation of 0.018 Mb/s. This number is less than half of the
theoretical link capacity of 2 Mb/s, but coincides closely with
the 0.9 Mb/s value typically observed when DSR is not used
at all. Due to a choice of MAC protocol parameters inside
the WaveLAN PCMCIA cards, node-to-node communication
does not proceed as quickly as basestation-to-node commu-
nication (which typically sees a throughput of approximately
1.27 MB/s (155 KB/s)).

We then moved both nodes into vehicles in the testbed and
separated the nodes by a distance of approximately 250 m.
Before starting the TCP test, we verified that the quality of the
wireless link between the two nodes was sufficient to allow
the nodes to successfully flood ping each other with 1024-byte
packets. The nodes then remained stationary for the remainder
of the test.

The outdoor test consisted of 5 transfers of 1 MB each
and 5 transfers of 5 MB each. The 1 MB transfers had an
average throughput of 0.81 Mb/s with a standard deviation of
0.022 Mb/s, while the 5 MB transfers averaged 0.73 Mb/s with
a standard deviation of 0.157 Mb/s. The significant decline
in average throughput for the 5 MB transfers results from a
single outlier with a throughput of 0.4582 Mb/s. The average
throughput of the other four transfers was 0.80 Mb/s.

16

The reasonable and consistent values of our one-hop TCP
results assured us that our implementations of DSR's Route
Discovery and Route Maintenance mechanisms were perform-
ing correctly and not inhibiting TCP's performance.

9.2 Two-Hop TCP Experiments

As with the one-hop TCP experiments, we began the two-hop
experiment by collecting data in the lab. Over 5 transfers
of 1 MB each, TCP averaged 0.50 Mb/s (61 KB/s) with a
standard deviation of 0.079 Mb/s. The variability is explained
by the fact that one transfer achieved only 0.36 Mb/s, while
all of the others achieved between 0.50 and 0.55 Mb/s.

In order to correctly position the nodes for the outdoor
experiment, two cars were driven in opposite directions and
positioned as far from an intermediate node as possible, while
still allowing both of the end nodes to successfully flood ping
the intermediate node with 1024-byte packets. Once posi-
tioned, the nodes remained stationary for the remainder of the
test.

This created a particularly challenging scenario, not only
because electromagnetic propagation is highly variable, but
because the specific setup of this test introduces the hidden ter-
minal problem. A number of times during these tests, we saw
the DSR retransmission timer expire, creating ROUTE ERRORS

and subsequent Route Discovery attempts to restore connec-
tivity. As described in Section 3, Route Discovery consists
of a node sending a non-propagating ROUTE REQUEST fol-
lowed by a propagating ROUTE REQUEST if no ROUTE REPLY

is received within 30 ms.
The 1 MB data transfers, which were set up to last for a

maximum of 50 seconds, timed out in some of the cases before
the entire megabyte could be transfered. In these cases, we
report the average data rate for the 50-second duration of the
connections.

The average data rate for the two-hop outdoor scenario
was 0.12 Mb/s (14.65 KB/s) with a standard deviation of
0.025 Mb/s, only 25% of the throughput measured in the lab.

The time-sequence number plot from one such two-hop
connection in the testbed is depicted in Figure 15. Sequence
numbers marked with a small dot were transmitted using a
two-hop route through the intermediate node, while sequence
numbers marked with the ' x' were transmitted directly be-
tween the endpoints. The dashed vertical lines in the figure
indicate when the TCP source performed a Route Discovery
consisting only of a non-propagating ROUTE REQUEST, and
the solid vertical lines indicate when a Route Discovery con-
sisting of both a non-propagating and a propagating ROUTE

REQUEST occurred.
For the purpose of discussion, let node A be the TCP source,

B the intermediate node, and C the TCP sink. Figure 15
shows the TCP connection making very good progress and
using almost exclusively a two-hop route for the first 9 sec-
onds of the connection. However, during the time interval
from 9 s to 22 s, the connection makes almost no progress,
sending about 30 KB in this 13 s interval. After processing
a ROUTE ERROR at t = 9 s, the TCP source (node A) initiates

Figure 15 A TCP sequence number plot for a 1 MB transfer
over a two-hop route. The vertical lines indicate the times at
which the TCP source initiated Route Discovery; the dashed

lines indicate the times at which only a non-propagating
ROUTE REQUEST was transmitted and the solid lines indicate
both a non-propagating and a propagating ROUTE REQUEST .

10

9

8

7
a

S3
E

x10
I I 1 1 1—

iß /''

8 C

1 5

W

3

2 /l P
1 * pkts sent on 1 hop routes

• pkts sent on >=2 nop routes

0 , , III!

20 25
Time (s)

Figure 16 A TCP sequence number plot for a 1 MB transfer
over a two-hop route when the macfilter utility was used on
both the source and destination nodes to prevent the use of
single-hop routes. The vertical lines indicate the times at

which the TCP source initiated Route Discovery.

a ROUTE DISCOVERY. The non-propagating ROUTE REQUEST

is answered directly by node C, causing A not to send a sub-
sequent propagating ROUTE REQUEST, but to use a single-hop
route to node C. The poor quality of this single-hop link leads
to repeated errors and Route Discovery attempts. Finally, at
t = 18 s, node A's non-propagating ROUTE REQUEST fails to
return any REPLYS and so A transmits a propagating REQUEST.
This results in the discovery of both the single-hop route and

17

the two-hop route through the intermediate node. By this
time, TCP has backed off and the next packet is not offered to
the network until t = 22 s. Node A attempts to use the one-
hop route that it discovered, finds that it does not work well,
removes the one-hop route from it cache, and begins using
the two-hop route. At this time, the connection again starts
making progress. The same scenario of repeated attempts to
use a one-hop route occurs again from t = 25 s to 32 s and
from t = 35 s to 43 s.

This scenario illustrates an important challenge for ad hoc
network routing protocols and argues strongly that all routing
protocols need some ability to remember which recently used
routes have been tried and found not to work. Even traditional
distance vector style protocols are subject to this problem as
they attempt to minimize a single metric—usually hop count.

Considering the three-node scenario discussed above, if
A, B, and C were all participating in a distance vector rout-
ing protocol, A would sometimes hear advertisements from
node C. Since the direct route to C is more optimal in terms
of hop count than the route through the intermediate node B,
A would attempt to send all of its packets directly to C until
that direct route timed out. In other words, without some type
of local feedback or other hysteresis, A will oftentimes try to
send its packets directly to C, effectively black-holing most of
these packets since that link is so unreliable. Protocols such as
Signal Stability Based Routing (SSA) [7] may behave much
better in this scenario.

To evaluate the potential gain of having a mechanism that
would prevent the repeated use of the poor direct route from
A to C, we emulated perfect routing information by using
the macf ilter to eliminate the discovery of 1-hop routes.
Figure 16 shows the time-sequence plot for a 1 MB transfer
in the field using this "perfect routing." The flat plateaus are
missing, and the throughput is 30% higher. We are presently
considering three ways to implement such a mechanism in
DSR.

One solution would be for DSR to cache information about
each link for which it receives a ROUTE ERROR. This negative
information could be timed out after a certain period of time,
but would prevent DSR from repeatedly attempting to use
a poor quality link. The drawback of this solution is the
difficulty of picking a reasonable timeout value.

A second and more favorable approach would be to use
the GPS information propagated by each node to model the
position of nodes. If the link A to C is found to be bad,
DSR could retain that negative information in its cache until
it finds that either node A or C has changed position in some
reasonably significant way.

The third and more sophisticated approach would combine
the signal strength at which the node received ROUTE REPLYS,

the position of the nodes, and the mobility pattern of the nodes
to estimate the probability that successful communication can
occur over a particular route. We intend to experiment with all
three approaches over the coming months to determine which
approach is most suitable.

10 General Lessons Learned
We are continuing to experiment with the testbed — refining
the protocols, the procedures, and the data analysis tools based
on our ongoing experience. We believe that building testbeds
like ours is a critical step towards a widespread deployment
of ad hoc networks. It has already taught us much about the
challenges faced by such networks, though this paper focuses
on the specific lessons we learned while building the testbed.
In summary, we briefly review some of the key issues we
discovered.

Obtaining route diversity is interesting, but expensive. As
described in Section 4, the core ad hoc network in our testbed
is comprised of 7 nodes: 2 stationary end-systems and 5
moving nodes that move back and forth along a road between
the 2 end-systems. This scenario works well given the limited
number of vehicles, but creates an environment in which there
is essentially no route diversity. In other words, at any point in
time, there exists only a single route between any two nodes.
This linear arrangement of the nodes also increases the hidden
terminal problem.

A less linear configuration would allow route diversity, but
would increase the partitioning of the network unless more
nodes were added. Similarly, the drawback of choosing radios
with a short range is that the network is easily partitioned
by only tens of meters variations in the relative positions of
the vehicles. However, since a goal of the testbed was to
challenge the protocols in a rigorous environment, the lack of
route diversity has contributed to understanding the protocols'
behaviors at one edge of the design space. As more nodes
become available, we can then evaluate the scaling and routing
issues at other points of the design space.

Adaptive retransmission timers are a necessary complexity.
Our experience makes clear that local retransmission algo-
rithms will be a critical part of any multi-hop ad hoc network.
Further, if the retransmission algorithm is implemented above
the link-layer, it must be adaptive in order to accommodate
network congestion and periods of high contention for the
wireless channel. We did find that passive acknowledgments
were successful in our environment, even though we did not
also implement the transmission pacing advocated by the de-
signers of the DARPA Packet Radio Network [15].

Multi-level priority queues are worth implementing.
Delivering routing protocol control packets as rapidly as possi-
ble is important for good end-to-end performance, and this im-
plies that packets with routing implications should be sched-
uled for transmission ahead of user's data packets. Our initial
implementation of a priority scheme simply prepended all
high-priority packets onto the network interface transmission
queue. However, this prepending caused reordering of both
the stream of control packets and the stream of user data pack-
ets, since retransmitted data packets are also considered high
priority. We found the most elegant solution was to imple-
ment a multi-level queueing scheme, with one queue for each

18

priority at each interface. While we use a trivial schedul-
ing algorithm, more sophisticated ones could potentially be
valuable.

Personnel management is nontrivial. A significant limitation
on the number of nodes in our testbed was the availability of
drivers to operate them. Although groups of three or four
people could conduct useful experiments, a full run with all
8 nodes required 7 or more participants for a period of 3 to 4
hours. Since most of the drivers we recruited did not have an
overall understanding of the system and project (and several
were not even associated with the project), each of the runs
started with a "mission briefing" to explain the goal of the ex-
periment and the tasks each node had to perform. Although not
described in this paper, we also developed many UNIX shell
scripts and procedures to automate as many functions of the
runs as possible, in particular the data logging, since several
early runs had to be repeated because drivers did not properly
configure and start the processes on their nodes. For safety
reasons, each experiment had to be controlled autonomously
or remotely once the cars started to move, since drivers could
not read the screen or type while driving.

In-lab testing of protocols is critical for success. The time
we spent developing the macfilter system for emulating ad hoc
networks was paid back many times over. It enabled exper-
imentation with multi-hop topologies in the lab, which then
served as a useful baseline for comparing with field measure-
ments. Its greatest contribution, in fact, was in debugging and
regression testing the implementations to harden them before
exposing them to the very unpredictable real world. The mac-
filter code itself took only a full day to write and test, and it
proved easy to integrate with the existing ad-hockey tool
for scenario generation.

Monitoring and data analysis are improved with GPS informa-
tion. Accurately knowing the position of each node during a
run enabled many useful operations including real-time diag-
nosis of network behavior and bird's-eye visualization of the
entire site using our network visualizer. GPS information also
enabled post-run analysis of the performance data that sepa-
rated the effects of wireless propagation (packet losses due to
transmission errors) from routing protocol induced behavior
(packet losses due to routing errors).

Wireless propagation is not what you would expect. We found
that some of the areas of the site that we expected to have the
best propagation, the straight flat areas with direct line-of-
site connectivity, in fact had the worst wireless error rates.
Conducting an initial survey of the site to identify these areas
was useful, even though we did not alter the node movement to
avoid the areas, because this knowledge of the site prevented
us from unduly wasting time looking for errors in the routing
protocol to explain the poor performance in these areas.

We also found that the real world propagation environment
will deliver packets between two widely separated nodes with
much greater frequency that we expected. Our performance

analysis demonstrates that this is a significant challenge that
all ad hoc network routing protocols will need to address.

Bystanders will think you are crazy. As an only partially
humorous suggestion to anyone building a testbed in an urban
area, it will be well worth your time to make friends early with
the local police and security guards. They will visit you on a
regular basis to find out what your slow moving cars covered
in antennas are doing. We were aided considerably by the
fact that our site was located in a research park, but it is still
worth preparing a list of stock answers. For example, "No,
we're not using the radios to conduct industrial espionage,"
"Our computers have a different purpose from the one in your
police car," and, "No, I haven't seen that episode of the X-
Files."

11 Conclusions

We have created a testbed for ad hoc network research, featur-
ing 2 stationary nodes, 5 car-mounted nodes that drive around
the testbed site, and 1 car-mounted roving node that enters
and leaves the site. Packets are routed between the nodes
using the DSR protocol, which also seamlessly integrates the
ad hoc network into the Internet via a gateway. We have char-
acterized the environment of the testbed site, evaluated some
basic performance properties of the network and its links, and
discovered practical challenges that routing protocols in this
environment will need to overcome.

This paper serves to document our experiences designing
and building the testbed, in the hopes that the challenges we
faced and our solutions will ease the path of future groups
attempting to building such testbeds. We are presently car-
rying out more experiments to characterize and improve the
performance of our ad hoc network protocol. We are experi-
menting with the network's behavior under different levels of
traffic load, including audio and video streams, and designing
protocol enhancements to provide these streams with quality
of service promises. We also intend to use the testbed for eval-
uating adaptive end-system techniques, including techniques
for TCP adaptation, and for application layer adaptation via
the Odyssey system [20].

12 Acknowledgements
The CMU ad hoc network testbed was the product of the
work of many people, but special recognition is due to Jorjeta
Jetcheva, Qifa Ke, and Ben Bennington. We are also grateful
for the efforts of the other members of the research team,
including Ratish Punnoose, Pavel Nikitin, Dan Stancil, Satish
Shetty, Michael Lohmiller, Yih-Chun Hu, Sam Weiler, and
Jon Schlegel.

References
[1] David A. Beyer. Accomplishments of the DARPA Survivable

Adaptive Networks SURAN Program. In Proceedings of the
IEEE MILCOM Conference, 1990.

19

[2] Josh Broch, David B. Johnson, and David A. Maltz. The
Dynamic Source Routing Protocol for Mobile Ad Hoc Net-
works. Internet-Draft, draft-ietf-manet-dsr-01.txt, December
1998. Work in progress.

[3] Josh Broch, David A. Maltz, and David B. Johnson. Sup-
porting Hierarchy and Heterogeneous Interfaces in Multi-Hop
Wireless Ad Hoc Networks. In Proceedings of the Workshop
on Mobile Computing held in conjunction with the Interna-
tional Symposium on Parallel Architectures, Algorithms, and
Networks, Perth, Australia, June 1999. To appear.

[4] Josh Broch, David A. Maltz, David B. Johnson, Yih-chun Hu,
and Jorjeta Jetcheva. A Performance Comparison of Multi-Hop
Wireless Ad Hoc Network Routing Protocols. In Proceedings
of the Fourth Annual ACM/IEEE International Conference on
Mobile Computing and Networking, pages 85-97, Dallax, TX,
October 1998.

[5] Stuart Cheshire and Mary Baker. Internet Mobility 4x4. In
Proceedings of the SIGCOMM '96, pages 318-329, August
1996.

[6] M. S. Corson, S. Papademetriou, P. Papadopoulos, V. Park,
and A. Qayyum. An Internet MANET Encapsulation Protocol
(IMEP) Specification. Internet-Draft, draft-ietf-manet-imep-
spec-01.txt, August 1998. Work in progress.

[7] Rohit Dube, Cynthia D. Rais, Kuang-Yeh Wang, and Satish K.
Tripathi. Signal Stability based Adaptive Routing (SSA) for
Ad Hoc Mobile Networks. IEEE Personal Communications,
pages 36-45, February 1997.

[8] Francis Dupont. INRIA IPv6 Distribution.
ftp://ftp.inria.fr/network/ipv6/.

[9] Kevin Fall. Network Emulation in the VINT/ns Simulator. In
Proceedings of the Fourth IEEE Symposium on Computers and
Communications (ISCC'99), July 1999.

[10] J.J. Garcia-Luna-Aceves, C.L. Fullmer, E. Madruga, D. Beyer,
and T. Frivold. Wireless Internet Gateways (WINGS). In
Proceedings of IEEE MILCOM'97, November 1997.

[11] IEEE Computer Society LAN MAN Standards Committee.
Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications, IEEE Std 802.11-1997. The In-
stitute of Electrical and Electronics Engineers, New York,
New York, 1997.

[12] David B. Johnson. Routing in Ad Hoc Networks of Mobile
Hosts. In Proceedings of the IEEE Workshop on Mobile Com-
puting Systems and Applications, pages 158-163, December
1994.

[13] David B. Johnson and David A. Maltz. Dynamic Source Rout-
ing in Ad Hoc Wireless Networks. In Mobile Computing, edited
by Tomasz Imielinski and Hank Korth, chapter 5, pages 153-
181. Kluwer Academic Publishers, 1996.

[14] Rick Jones. The Netperf Homepage, http://www.netperf.org/.

[15] John Jubin and Janet D. Tornow. The DARPA Packet Radio
Network Protocols. Proceedings of the IEEE, 75(1):21—32,
January 1987.

[16] Robert E. Kahn, Steven A. Gronemeyer, Jerry Burchfiel, and
Ronald Kunzelman. Advances in Packet Radio Technology.
Proceedings of the IEEE, 66(11):1468-1496, November 1978.

[17] Barry M. Leiner, Robert J. Ruth, and Ambatipudi R. Sastry.
Goals and Challenges of the DARPA GloMo Program. IEEE
Personal Communications, 3(6):34^13, December 1996.

[18] David A. Maltz, Qifa Ke, and David B. Johnson. Em-
ulation of Ad Hoc Networks. Talk delivered at the
VINT Project Retreat, June 1999. Slides available from
http://www.monarch.cs.cmu.edu/papers.html.

Yukio Murayama and Suguru Yamaguchi. DBS: A Powerful
Tool for TCP Performance Evaluations. In SPIE Proceedings
of Peiformance and Control of Network Systems, November

1997.

[19]

[20] B. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton,
J. Flinn, and K. Walker. Agile Application-Aware Adaptation
for Mobility. In Proceedings of the 16th ACM Symposium on
Operating System Principles, pages 276-287, St. Malo, France,
October 1997.

[21] Brian Noble, M. Satyanarayanan, Giao Nguyen, and Randy
Katz. Trace-Based Mobile Network Emulation. In Proceedings
of SIGCOMM '97, pages 51-61, September 1997.

[22] Charles Perkins, editor. IP Mobility Support. RFC 2002, Oc-
tober 1996.

[23] J. Postel. Transmission Control Protocol. RFC 793, September
1981.

[24] Neil Siegel, Dave Hall, Clint Walker, and Rene Ru-
bio. The Tactical Internet Graybeard Panel Brief-
ings. U.S. Army Digitization Office. Available at
http://www.ado.army.mil/Briefings/Tact%20Internet/index.htm,

October 1997.

[25] Bruce Tuch. Development of WaveLAN, an ISM Band Wire-
less LAN. AT&T Technical journal, 72(4):27-33, July/August
1993.

[26] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated,
Volume 2: The Implementation. Addison-Wesley, Reading,
Massachusetts, 1995.

20

